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We show that in circular Couette flow (i) for the transition to steady Taylor-vortex flow and (ii) for the transition to
time-dependent wavy-vortex flow a space-dependent order parameter obeys a Ginzburg—Landau-type equation. Our meas-
urements allow extrapolation of the critical Reynolds numbers to infinitely long cylinders.

We present here the first detailed measurements of
the axial dependence of the order parameter both
for the transition from circular Couette flow to sta-
tionary Taylor-vortex flow and the subsequent tran-
sition to time-periodic wavy-vortex flow. For both
transitions, the end plates influence the flow. Cole
[1] and Kuznetsov et al. [2] observed that vortex
cells build up gradually from the ends of the cylinder.
Thus the estimation of a critical Reynolds number
must be more or less subjective [3]. Similarly, wavy
vortices depend strongly on cylinder length to gap
ratio [1] and on boundary conditions.

While the first transition is a continuous process
and therefore not an instability [3] the transition
to the wavy-vortex state remains sharp and gives de-
finite critical Reynolds numbers [4,5].

Much theoretical work has been done concern-
ing these transitions, but usually these calculations
refer to infinite annulus length only or employ un-
realistic boundary conditions [6].

The order parameter concept allows a parametri-
zation and theoretical description of hydrodynamic
instabilities [7,8] . For the case of stationary Taylor
vortices, Donnelly [9], Donnelly and Schwarz [10],
and more recently Gollub and Freilich [11] showed
that the order parameter dependences on Reynolds
number and time follow the theoretical predictions.
They did not take into account any spacial depen-
dence of the order parameter as Wesfreid et al. [12]
did for the Bénard instability. The latter authors ob-

tained the predicted dependence of the order param-
eter on Rayleigh number, time and space.

Taking the space dependence into account, the
evolution of the order parameter v is governed by the
time-dependent Ginzburg—Landau equation [13]:

Tnawar=eV— V3IV§+55 32 V;’sz, (1)

with € = (Re — Re_)/Re_, where Re is the Reynolds
number *! and Re_ the critical Reynolds number for
infinitely long cylinders, 7 is the linear amplifica-
tion rate, V; a normalization constant such that

Ve Vg = V for cylinders of infinite length and & the
length unit = cell dimension.

This model holds for the most stable wavelength
of Taylor vortices only. Changing the wavelength by
5% we found changes in the critical Reynolds num-
ber of the onset of the wavy mode up to 15%. This
phenomenon was clearly described by Benjamin and
Mullin [4,5].

For the stationary case (0/9¢ = 0) considere here,
eq. (1) may be integrated. It is convenient to intro-
duce the (maximal or minimal) amplitude V' =V,
which is realized at midlength x = 0 of the cylinder.

The solutions are [14] :

Vo< Vi V=V, no((x/kg)(V2 IVE— ) 12m),
(2a)

*l Re= Fi(ra — ry) 2 /v, 821 = 27 X rotation rate of inner
cylinder, v is the kinematic viscosity,
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with

m= (V2 —2eV5)/2VE —2eV3);
2 2 2
meﬁ = EVU <V

V=v_ de((x/t)V, /(V,V2)Im), (2b)
with
m=QeVi) Vi —1;

2 <eVl: V=V_cd((x/ty)(e - V2 2V) 2 m),

m imn
(2¢)
with

- 172 2 2
m= e flelV s~ ¥ )

The functions nc, dc and cd are jacobian elliptic func-
tions depending on argument and parameter.

In our experiments, several grades of silicon oil
were confined between an inner rotating cylinder
(r; =11.56 mm) and an outer stationary cylinder
(ro =22.82 mm) yielding a gap width of 11.26 mm,
which was uniform to within 1% over the entire
length. Top and bottom end plates were stationary
and could be adjusted up to a maximum separation
of L = 404 mm. The fluid was thermostated to with-
in 0.05 K corresponding to an uncertainty of 0.1%
in the Reynolds number. The local velocity was meas-
ured by a real fringe laser Doppler anemometer de-
scribed elsewhere [15].

(i) Measured radial velocity versus annulus height
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Fig. 1. Measured radial velocity profiles for three rotation
frequencies of the inner cylinder. Note that the end vortices
induce vortices even below ¢ = 0.
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Fig. 2. Measured space-dependent order parameter for three
values of e, The solid lines are least-squares fittings according
to eqs. (2).

for the stationary Taylor vortex flow in shown in

fig. 1 for three different rotation rates. In this case
the height to gap ratio was 18.5, and the total num-
ber of vortex pairs was 9. The figure suggests that

the end (Ekman) vortices induce (Taylor) vortices
even below € = 0. For comparison with theory, the
maximum amplitude within each vortex pair is taken
as the order parameter, which therefore assumes dis-
crete values only. By fitting the measured values of
the order parameter to the appropriate function (2a)
or (2b), a value of the parameter m is obtained. An
example of such a fit is shown in fig. 2. From m as
defined in eq. (2a) or (2b) and the measured value
V., one computes Ve Vq, the order parameter for
the infinitely long annulus. A plot of a secguencﬂ of
such values \/e Vo, or rather its square e}y, versus ro-
tation rate yields the critical rotation rate or Reynolds
number that would be valid for the infinitely long
geometry as shown in fig, 3.

Our experimental value of Re_ = 68.0 agrees well
with those obtained theoretically by Kirchgissner [16]
and Davey [17] which are 68.2 and 68.19, respec-
tively. The main experimental error is due to the
viscosity measurement, which is about 1%.

(ii) The second instability is the wavy, time-period-
ic mode, first reported in detail by Coles [18]. If the
gap width ry — r; is comparable to r{, the first azi-
muthal wave number is » = 1 observed by flow visual-
ization and rate correlation velocimetry [19]. To
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Fig. 3. Plot of EV% data (as obtained from previous fits) ver-
sus rotation frequency. Intercept yields critical frequency
of infinite geometry.

some approximation, the toroidal Taylor vortices

are slightly tilted out of the plane perpendicular to
the cylinder axis, and the tilted vortices rotate about
the axis. In our measurements this travelling trans-
versal wave manifests itself as an oscillation of the
vertical velocity. It has proved convenient to identi-
fy the order parameter with the oscillation amplitude
of vertical velocity at a spot about 1 mm from the
inner cylinder and in a region where there is inward
flow associated with the vortices. Since the tilt angle
vanishes at top and bottom, so does the order param-
eter. Fig. 4 shows two measurements of this order
parameter versus axial height at two different Rey-
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Fig. 4. Measured space-dependent order parameter in the
case of the wavy-vortex state. Note that the amplitudes are
normalised to show that the shape of the function changes.
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Fig. 5. Plot of (1 + m)K?(m) (with m obtained from previ-
ous fits) versus rotation frequency. Intercept yields critical
frequency of infinite geometry.
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nolds numbers. Fitting the measured data to the
function cd of eq. (2c¢) yields the parameter m and
V., hence EV% as well. Taking advantage of the pe-
riodicity of cd with period 4K(m), K(m) being the
complete elliptic integral of the first kind, one gets

€= 4(%y/L)* K*(m) (m + 1), (3)

Fig. 5 shows a plot of K2(m) (m + 1) versus rotation
rate. The intersection of the resulting straight line
with the abscissa gives the critical rotation rate which
would apply to an infinitely long cylinder. The evalu-
ation also yields £, which, as may be expected, is

of the order of the gap width.

In summary, our results show that the Landau pic-
ture satisfactorily describes both hydrodynamic tran-
sitions discussed here, provided the second-order
space derivative is included in eq. (1) and the wave-
length of the (Taylor vortex) cells is held fixed at a
value corresponding to the lowest critical Reynolds
number for the onset of stationary Taylor-vortex
flow. We present the first experimental proofs for
the onset of stationary Taylor vortices as well as the
lowest-order time-dependent wavy-vortex mode. In
the latter case our work constitutes the first quanti-
tative treatment of this particular phase transition.

In both cases our fitting procedures allow an ex-
trapolation to the critical Reynolds numbers for in-
finitely long cylinders with a precision virtually limit-
ed by uncertainties in the viscosity measurements
only. Comparison with Kirchgéssner’s and Davey’s
calculations [16,17] yields excellent agreement for
the onset of stationary vortices, whereas the formula
given by ref. [1] yields a critical Reynolds number
for the onset of the wavy mode which is wrong by
a factor of 5 under our experimental conditions.

21



Volume 83A, number 1 PHYSICS LETTERS

U. Gerdts very ably perfected the fluid flow and
data reduction equipment used in this research. E.O.
Schulz-DuBois introduced us to hydrodynamic in-
stabilities and give his support during the course of
this work.
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